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Biased regression estimatorS are increasingly being utilized

as alternatives to least squares parameter estimators in multiple

linear regression when the predictor variables are multicollinear.

One popular biased estimator is the ridge regression estimator.

Ridge estimators are known to have smaller mean squared errors
I,. 

~• >4 than least squares for suitably small nonstochastic choices of the
04

ridge parameter. To date, however, most of the practical applica-

tions of ridge regression employ stochastic techniques to select

-~~~~ the ridge parameter . In this paper we examine three nonstochastic

procedures for choosing ridge parameters and compare their perform—

ance with a stochastic method proposed by Hoerl , Kennard , and

Baldwin (1975) .
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D3st. AVAIL and/or SPECIAL

1. I~~~~DUCTION

Hoerl and Kennard (1970a , b) introduced ridge regression

estimation as an alternative to least squares estimation of the

parameters of a multiple linear regression ior del when the predictor

variables are mu].ticollinear . Write the regression nodel as

(1.1)

where Y is an n x 1 vector of response variables , 1 is an n x ~

vector of ones, X = 
~~~~~~~ ~~~~~

‘ 
.. ., X ]  is an n x p full column rank

matrix of nonstochas tic predictor variables that are standardized

so that ~~1 0 and X’X . = 1 (j 1, 2, ..., p), B and 8 are us-

known constants , and c is an n x ~ vector of random error terms

with NID(0 , a 2) The least squares and (simple) ridge esti—

mators of B are , respectively,

5 — (X X)~~ X and ( X X  + kI )~~~X Y  ( 1 .2)

wherek>0.

Theoretical properties, including optimality considerations ,

of ridge estimators have been derived under the ass~miption that the

— 
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selection of the ridge parameter, k , is nonstochastic . Specifical—

ly, if the ( total ) mean squared error of a regression estimator B

is defined to be

mse(8) — E ( ( ~.. — ~~
) ‘( .~~. — 

i.
) ]  (1.3)

Hoerl and Kennard (l970a) proved that a nonstochastic choice of k

that is suitably small would insure that

< mse(B) . (1.4)

If the latent roots of X X  are denoted £~ ~ ~~~2 
< 

~~
•
~~

< and the

corresponding latent vectors are V1
, V2, ..., y~, a sufficient

condition for (1.4) to hold is that

0 < k < ~
2,,,2 , (1.5)

where — max {4~~; j  — 1, 2 , ..., p} and — y~ B.

Two problems arise with the practical implementation of ridge

regression using (1.5) . First , the above properties have only been

derived for nonstochastic selection rules for k. Second , the bound

in (1.5) is a function of the unknown model parameters . Most of

th. applications of ridge regression methodology , however , employ

stochastic estimators of k (e.g. Hoerl and Kennard 1970b ; McDonald

and Schwing 1973; and Hocking , Speed, and Lynn 1976) . To date ,

littl, attention has been given to nonstochastic selection rules.

_  - ~~: .~~~~~~~~~~~~~~~~~~~~~~~~~~ . - 
T~~~~~~~~~~~~~~~~~~~~~
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2. THREE NONSTOCHASTIC SELECTION RULES

One of the motivations for adopting ridge regression over

least squares is that the resulting estimates behave more like they

are generated by an orthogonal X matrix than a mu.tticollinear one.

The rules proposed in this section were investigated because they

enable ( X X  + kI) to e,thibit properties more closely associated

with the identity matrix than does X~X.

If X is an orthogonal matrix (standardized as in Section 1),

the following three properties are true of X X :

(i) xxj — 1

(ii) (X X) 1 
— I and , therefore, the variance infla—

- — ltion factors (th.agonal elements of CX X)

Marquardt (1970) ) are all equal to 1 ; and

(iii) the latent roots of X X  are all equal to 1 (i .e . ,

— 1 for all j ) .

These characteristics all follow from the realization that X X  — I

if the columns of X are mutually orthogonal . On the other hand ,

if X contains highly multicollinear columns (e.g • Mason , Gunst ,

and Webster 1975) ,

Ci ) IX X I 0

(ii) the variance inflation factors are much larger

than 1; and

(iii) one or more of the latent roo ts of X~X are d oes

t o o .

.- - -  - -- --.---- — -- -~~~
---- - —— ~~~
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In order to compensate for the deleterious effects of multi—

collinearities on these properties of X X , we propose to examine

the following three rules for selecting k.  The resulting ridge

regression estimators , all of which are found using ~~ in (1.2) ,

are identified as RR ( 2 ) , RR (3) , and RR (4 ) :

RR (2 ) : Choose k so that 1xx  + kI~ — 1.

P.R (3) : Choose k so that the largest variance inflation factor

equals 4.

R R ( 4 ) :  Choose k so that the “multicollinearity allowance ”

(Vi nod 1976 )

p

in - p - ~ Z . ( t ~~ + k)’1 (2.1)

equals the number of mu].ticollinearities existing

among the predictor variables .

The multicollinearity allowance , in in (2.1) , can be inter—

preted (Vi nod 1976 ) as “the assigned deficiency in the rank of

X~X. ” In our investigations if X is an orthogonal matrix , or

nearly so, a rank deficiency of zero is assigned to X X .  Solving

(2 • 1) for k when a — 0 yields k — 0; i .e . ,  the ridge estimato r in

( 1.2)  reduce s to the least squa res estimator . On the other hand ,

if r aulticollinsarities are identified in X , in is set equal to r

- 
and (2.1) is solved iteratively for k.

_______ - ~~~. - - ~~~~~~~
- - — — - — — — - ——~~~~~~~~~~~~~
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3. ?~ AN SQUARED ERROR COMPARISONS

Comparison of stochastic estimators of the ridge parameter

have been conducted by simulation due to the complexity of the

theoretical distribution of when k in (1.2) is random. Hoerl ,

Kennard , and Baldwin (1975) estimated k with

= ~~~~~~~ , (3.1)

where B and are least squares estimators of the respective

parameters . They concluded that using the random estimator of

k off ered great potential for reducing the mean squared error of

over that of 8. Following up on this study, Hoerl and Kennard

(1976) iterated with ( 1.2) and (3.1) using k to obtain ~~~~~ , then

inserting in (3.1) to obtain a new k , and repeated the process

until the estimates k (and ~~ ) converged. Their simulation showed

that the iterated ridge estimator offered further improvement in

mean squared error over least squares and the noniterated ridge

estimator. In both of these studies the magnitude of the reduction

in mean squared errors of the ridge estimators over least squares

L was linked to the magnitude of the signal—to-noise ratio, p — C l 2
:

the larger the value of , the less the reduction in mean squared

error of the ridge estimators over least squares . Also , the more

multicollinear the data set , the greater the reduction in the mean

- squared error of the ridge estimators .
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Dempster, Schatzoff, and Wermuth (1977) performed an extensive

simulation involving 57 different estimators (including least

squares and several ridge estimators) and 160 model. configurations.

Although no replication of the model configurations was reported ,

the ridge estimators generally were superior to least squares and

at least competitive with the other biased estimators examined; in

fact, one ridge estimator (RIDGM ) was considered the best overall

when comparisons were made with mean squared error , (1.3) , as the

criterion.

Gunst and Mason (1977) compared five regression estimators,

including least squares and a ridge estimator using k in (3.1).

Their simulation involved 24 model configurations, each of which

was replicated 100 times . Overall, their conclusions parallel the

above ones with two reservations :

(i)  there are specific model configurations for which

the ridge estimatox is empirically inferior to

least squares , and

(ii) the ridge estimator was not judged the best overall

altho~ gh it was generally superior to least squares.

One of the reasons pointed out for the latter conclusion was the

high degree of variability associated with the estimator of k --
another motivation for studying nonstochastic selection rules for

k.

—.-‘ : : i~~~ ._. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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We now wish to examine the mean squared errors of ridge re-

gression estimators using choices of k based on the rules RR ( 2 ) ,

RR ( 3) , and RR (4 ) . For comparison purposes, we calculate mse(~~ )

using (1.3) for the twelve model configurations for the inulticol-

linear X matrix in Gunst and Mason (1977) . This 30 x 10 matrix

contains a single strong multicollinearity among the first four

col umns of predictor variables . The latent roots of X’X for the

data are —

£l =0.00 362 t 2 =0.37 145 9.3 =0.49723 9 4~~ 0.6369l £~ =0.72105

t
6 

= 1.08692 £
7

— 1 . 2 2 6 9 3  £~~= 1.42364 £~~— 1.55308 2.47918 .

The magnitude of the first latent root of X X  compared with the

remaining ones indicates that a single strong multicollinearity

exists in X. The large elements of V1 identify which variables
- are involved in the multicollinearity:

= (0.658 , —0.487 , —0.451 , —0.353 , —0.006 ,

- 0.001, —0.003, 0.019 , —0.022, —0 .022).

This latent vector reveals that the first four predictor variables

are involved in the znul ticollinearity. The variance inflation fac-

- 
- 

tars (VIF) corroborate the conclusion:

Variable : X1 X2 
X
3 X

4 
X
5 

X
6 

X7 
X
8 

X9 
X10

VIF: 120.1 66.4 57.1 35.9 1.2 1.2 1.3 1.6 1.2 1.6

~ 

~~
—- - —

~~~~~~~
— - 
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The twelve model configurations incorporating this X matrix

are identified by all combinations of four signal—to—noise ratios,

p B..B/02 and three orientations of B with !~~ ‘ 
~~l 

= V~ B. The

four signal—to— noise ratios studied are p = 0.04, 1.0, 100, and

10,000 . The three orientations are determi ned by letting B equal

!io ~~l 
= 0 .0 ) ,  o.5~ Vl + + + V)~~ } (

~~ = 0 . 5) ,  and Vl ~~~~~~~~~

1.0) . These choices of B enable the coefficient vector to be

orthogonal, neither orthogonal nor parallel, and parallel to the

vector defining the multicollinearity, respectively .

To eliminate scale differences in the comparisons , we tabu-

late the scaled mean squared errors, mse(8)/c
2
. For the ridge

estimators with nonstochastic k the scaled mean squared errors can

be written

= 
~ 

£ .( i . + k) 2 
+ k 2p 

~ 
(9 . . + k) 2

~~ (3.2)

where = (V~8)
2 
(note that both V. and B are unit length vectors

3 —3—. —.J — -

for these model configurations). Least squares scaled mean squared

errors are given by

p
- mse(3)/a2 — ~ 9.~

l 
(3.3)

t

S.

-t - .

- -~~~~~ ~~~~~~~~~~~~~~~~~~ ~ L~~i~~~~~~--~~~~~
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4. DISCUSSION OF RESULTS

Table 1 displays the theoretical mean squared errors for least

squares and the optimal mean squared errors for ridge regression

for the model configurations discussed in the previous section.

• The theoretical value for least squares for all model configura-

tions is given by ( 3 .3 ) ; i .e.;  for the latent roots listed in the

previous section

10

~ 9. 1 
= 287.63

The optimal mean squared error for the ridge estimators is obtained

• from the “generalized” ridge estimator

= ( X X  + K) 1X Y  , (4.1)

where K = diag(k
1, k2, ... , k), of which the simple ridge estima-

tor is a special case with k
1 = ... = k~, = k. Using the

generalized ridge estimator , the mean squared error (1.3) becomes

mee(
~ R

) — 

j—l 
{a 29.~ (i~ + k~ ) 2 

+ ~~~~~ + k~ ) 2
~~ } (4 .2 )

which is minimized when k . = c2/~~ . Inserting the optimal into

- 
(4.2) produces the scaled mean squared errors for the generalized

I 
. ridge estimator that are e~thibited in Table 1.

[Insert Table 1)

L - L -.. .....- . - - -
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Simple ridge estimators cannot hope to achieve the optimal

mean squared errors shown in Table 1. Nevertheless , these optimal

values provide a gauge of the maximum reduction in mean squared

error that is possible using ridge regression estimators. Note in

particular that if p or is small enormous reductions are possi-

ble. If both p and are moderate or large , only small reductions

in mean squared error can be obtained; on the contrary, in these

situations simple ridge estimators can perform much worse than

• least squares.

Mean squared errors for the ridge estimators RB (2), RB (3),

and RR(4 ) were obtained by iterating on k until each of the criter-

ia were satisfied to four decimal place accuracy in k. Solutions

• for k are

RR ( 2 ) : k = .2100 RR (3) : k = .0172 RR (4 ) : k .0165

• The theoretical mean squared errors for least squares and the ridge

estimators for the twelve model configurations discussed earlier

are displayed in Table 2 along with the estimated mean squared

errors for ridge regression using (3.1) to estimate k that were

obtained in the simulation of Gunst and Mason (1977). The latter

-
. ridge estimator is labelled RR( l) in Table 2 and is included for

comparison purposes.

[Insert Table 2)

___________________________________________________________ -
~~~~~~~

•-

~~ .- 4



-‘~ - —-~~~~~~~~~~-- - - - - --- - -~~~~~~~~~~~~~ - - - -~~

- 12

• Overall the nonstochastic ridge estimators, especially RR (7) ,

offer as large or substantially larger reductions in mean squared

error over least squares as does the stochastic version , RR( l) .

The notable exceptions to this statement occur for p = 10,000 and

0.5 or 1.0. Between 6- and 35—fold increases in mean squared

error over least squares are observed for the nonstochastic ridge

estimators with these two model configurations. The stochastic

ridge estimator is comparable in mean squared error to least

squares when p = 10,000 and = 0.5 and over three times larger

when p = 10,000 and 
~~~~~~ 

1.0.

Conclusions to be drawn from this information include the

following:

(i) except for extremely large signal—to—noise ratios ,

— nonstochastic ridge estimators RR(2), RR (3) , and

RR (4 )  offer at least as great a reduction in mean

squared error over least squares as does the

stochastic ridge estimator, RR (l) ;

(ii) RR ( 2 )  is overall as good as any of the biased

estimators examined in Gumst and Mason (1977) ;

(iii) when signal-to—noise ratios are large, nonsto-

chastic ridge estimators can still reduce the

mean squared error over least squares if the

coefficient vector is orthogonal to latent vectors

of X~X that identify inulticollinearities; and

L •~~~~~~~~~~~ ~~ - - 
- - - - ____ 

~~~~~~~~~~~~~~~~ _______
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(iv) if 8 is not orthogonal to latent vectors of X~X

that identify multicollinearities and if the

signal-to—noise ratio is large, mse (~~ ) can be

orders of magnitude larger than inse(B).

5. RIDGE PRELIMINARY TEST ESTIMATORS

- 

Since the only situations in which the nonstochastic ridge

estimators were clearly inferior to least squares in Table 2 occur-

red when p was large and ~ 0 , one might consider the following

estimation procedure. For X matrices with a single strong multi-

collinearity (the procedure is readily generalizable to two or

more multicollinearities), test the hypothesis

H :  V~8 = 0 vs Ha : Vj 8 # 0

with the statistic

F L1(V~~~8) 2
/MSE , (5.1)

the usual normal-theory test statistic for H . Let F denote the
0 Cl

appropriate upper-tail l0O~ % point of an F distribution with 1 and

n-p-l degrees of freedom. Then let

if F < F
Cl

,

~PT <~ 
(5.2)

18 if F > ?
— a

_____________ ________ ~~~~~~~~~~~~



- - - -

14

where is a nonstochastic ridge estimator (R R ( 2 ) , RR(3), or ‘

R R ( 4 ) ) .  The estimator (5.2) is referred to as a preliminary test

estimator since its form depends on the outcome of the test of H0.

Following Bock, Yancey, and Judge (1973), the preliminary

test estimator (5.2) can be written as

= ~~~~ )(F)
I
•~f( + IF? )(F)•B (5.3)

a

where 1 (a,b) (u) — 1 if a u < b and equals zero otherwise. A

straightforward but tedious derivation reveals that

— ~ 9. 1 + kL~~ (9.1+k)~~p3(A){k(&1
+k)~~~-2}

+ kp1( A )  ~ & .
1(L~+k) {k(i~+k)~~ - 2)

+ pk~~~(9.1
+k) 1{2p

3
(X) — 2p

5(A) +k(t1
+k) 1

p5(A )}

+ pk 2p
1
(A) ~ (9.•+k) 2

$~ (5.4)
- j=2 3

where p (A) — Pr{F(r, n—p—i, A ) < c/r} and F(r, n-p—l, A) is a

noncentral F random variable with r and n-p-i degrees of freedom

and noncentrality parameter ~ — 
~ 
(!.1~

) 2/2ci~.

The effect of the preliminary test on the mean squared errors

of the nonstochastic ridge estimators can be seen in Table 3. To

varying degr..s both preliminary test procedures (using a — 0.05

- _ _
~~~~~~- — - _ - ~~~~~~~~- 

-- 
~~

_ - - - .  
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

-
~~~

- -
~

-
~~~~~~~~~~~~~~~

- _  

~~~~~~~~~~I.—-- - -  --- --
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and 0.01) protect against catastrophic increases in mean squared

error over least squares for p — 10,000 and — 0.5 or 1.0,

particularly for the latter orientation. Balancing the decrease

in mean squared error for these two configurations from those re-

ported i~ Table 2 is a moderate increase in mean squared error for

most of the other configurations. It is interesting to observe,

however, that all the nonstochastic ridge estimators using the pre-

liminary test procedure with a — 0.01 are competitive with RR( 1)

except for the configuration with p — 10 , 000 and — 0.5.

6. CONCLUSION

Nonstochastic ridge selection rules are important to ridge

regression methodology because virtually all the theoretical prop-

erties of ridge estimators must be derived under the assumption

that k is nonrandom . In this study three nonstochastic selection

rules for ridge parameters were investigated and compared with one

stochastic version. The nonstochastic ridge estimators were shown

to compete very f avorably with the stochastic one when mean squared

error is a criterion, although in some specific model configura—

tions all the ridge estimators are inferior to least squares.

• In the course of this investigation several additional obser-

vations were made that have a bearing on the conclusions drawn

herein. First, Vinod ’s (1976) use of the minimum ISRM (Index of

Stability of Relative Magnitudes) as a criterion for selecting an 

--—
~~~~ ~~- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

- - -~~
_
~~~

— ~~~~~~~~~ - -
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appropriate value of the muiticollinearity allowance performed

erratically . On some X matrices studied the minimum ISRM indicated

a multicollinearity allowance that appeared to be much larger than

one would select from other considerations (e.g. latent roots and

vectors of X X ) , a tendency that was also observed by Wichern and

churchill (1976) . Also , the calculation of 15R11 often indicates

several local minima and it is not clear whether the absolute min-

imum or the first local minimum should be utilized . Our preference

is to identify the number of multicollinearities in X through the

use of latent roots and vectors of X X , variance inflation factors,

and pai rwi se correlations among predictor variables and set m in

~2.l) equal to the ntm~ er of muiticollinearities so identified.

A second observation made during the course of this study is

that modifications of the nonstochastic selection rules may be

desirable depending on the nature of the auiticollinearities. For

example , if two or more strong mui.ticollinearities occur in X ,

RR (2 )  can be less effective in reducing mean squared error than

P.R(3) or RR(4). This is because X X ~ can be so close to zero that

a larg. value of k is required to force Ix x  + kI I to equal 1.0.

Large values of k do not reduce the variance portion of mse(~~ ) as

substantially as do small ones and may thereby negate the advantage

of taing ridge regression.

Finally, modifications of the preliminary test procedure may

be possible . These modifications shoul d be aimed at reducing the

______  _ _ _ _ _ _ _ _  _____

~~~~~~~~~~~~~~~~~~~~~~

• - ~~~~~~~~~~~~~~~~~~~~~~
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mean squared errors for the ridge estimators at the one or two con-

figurations for which they are inferior to least squares in Table 3

while not causing substantial increases in mean squared error at

the other model configurations.

3

• 

_ _ _  _ _  
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1. Least Squares and Generalized Ridge Regression Scaled

Mean Squared Errors

Estimators p — 0.04 p — 1.0 p — 100 p — 10,000

a.~~~1 0.0

LS 287.63 287.63 287.63 287.63
0.04 0.29 0.40 0.40

b. k1 - 0.5

IS 287.63 287.63 287.63 287.63
RR 0.04 0.81 26 .38 252.49

C. 
_ _ _ _

LB 287 .63 287.63 287.63 287.63
0.04 1.00 73.42 268.82

I-

•

~
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2. Mean Squared Errors of Least Squares and

Ridge Regression Estimators

Estimator p = 0.04 p = 1.0 p 100 p = 10,000

a. 1 0.0

LS 287.63 287.63 287.63 287 .63
RR ( l )  24 .44 34.93 26.79 208 .74
RR(2) 6.51 6.51 7.12 67.50
RR (3) 18.90 18 .90  18.90 1 9 . 3 7

RR (4) 19.48 19.48 19.48 1 9 . 9 2

b. i 05

LS 287.63 287.63 287.63 287.63
RR (l )  23.20 18.66 41.03 367.36
RR ( 2 )  6. 52 6.79 34 .44 2 ,799.34
RR( 3) 18.91 19.07 36 .01 1, 730 .44
RR(4) 19.48 19.64 36 .35 1, 707.20

C. 
_ _ _ _

LS 287.63 287.63 287.63 287.63
RR(l) 29.81 32.29 100.37 801.66
RR(2) 6.55 7.47 103.15 9,670.48
RR(3) 18.93 19.58 87.15 6,843.79
RR(4) 19.50 20.15 86.79 6,750.64

- 
I
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3. Mean Squared Errors of Ridge Preliminary Test Estimators:

a = 0.05 (Top Line) and a = 0.01 (Bottom Line )

Estimator p = 0.04 p = 1.0 p — 100 p — 10,000

a. 
_ _ _ _

RR (2) 77.79 77.79 78.37 135.72
26.81 26.82 27.41 87.19

RR ( 3) 87.84 87.84 87.85 88.30
38.55 38.55 38.56 39.02

RR(4) 88.28 88.28 88.28 88.69
39.09 39 .09 39 .09 39.53

b. l 0*5

RR (2 ) 77.80 78.08 107.20 1,330.61
26.82 27.11 56.82 2 ,090.71

RR (3) 87.85 88.05 108.25 1,042.61
38. 56 38.75 58.20 1,502.61

RR (4) 88.29 88.48 108.50 1,035.02
39.10 39 .28 58. 51 1,488 .08

c. 
_ _ _ _ _

RR(2) 77.83 78.83 179.26 420.71
26.85 27.86 131.40 1,101.83

RR ( 3)  87.88 88.66 167.77 394.21
38.59 39.34 116.67 922.65

RR(4 ) 88.31 89.09 167.47 393.29
39~.l2 39.87 116 .28 916 .50

t
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